Optimizing Fuzzy Cluster Ensemble in String Representation

نویسندگان

  • Hosein Alizadeh
  • Behrouz Minaei-Bidgoli
  • Hamid Parvin
چکیده

In this paper, we present a novel optimization-based method for the combination of cluster ensembles. The information among the ensemble is formulated in 0-1 bit strings. The suggested model de ̄nes a constrained nonlinear objective function, called fuzzy string objective function (FSOF), which maximizes the agreement between the ensemble members and minimizes the disagreement simultaneously. Despite the crisp primary partitions, the suggested model employs fuzzy logic in the mentioned objective function. Each row in a candidate solution of the model includes membership degrees indicating how much data point belongs to each cluster. The de ̄ned nonlinear model can be solved by every nonlinear optimizer; however; we used genetic algorithm to solve it. Accordingly, three suitable crossover and mutation operators satisfying the constraints of the problem are devised. The proposed crossover operators exchange information between two clusters. They use a novel relabeling method to ̄nd corresponding clusters between two partitions. The algorithm is applied on multiple standard datasets. The obtained results show that the modi ̄ed genetic algorithm operators are desirable in exploration and exploitation of the big search space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electromagnetism-like Algorithms for The Fuzzy Fixed Charge Transportation Problem

In this paper, we consider the fuzzy fixed-charge transportation problem (FFCTP). Both of fixed and transportation cost are fuzzy numbers. Contrary to previous works, Electromagnetism-like Algorithms (EM) is firstly proposed in this research area to solve the problem. Three types of EM; original EM, revised EM, and hybrid EM are firstly employed for the given problem. The latter is being firstl...

متن کامل

A new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble

An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Associations Among Information Granules and Their Optimization in Granulation-Degranulation Mechanism of Granular Computing

Knowledge representation realized by information granules is one of the essential facets of granular computing and an area of intensive research. Fuzzy clustering and clustering are general vehicles to realize formation of information granules. Granulation – degranulation paradigm is one of the schemes determining and quantifying functionality and knowledge representation capabilities of inform...

متن کامل

An Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems

An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJPRAI

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013